Revision Theory of Probability

Catrin Campbell-Moore

Corpus Christi College, Cambridge

Bristol–München Workshop on Truth and Rationality June 2016

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
●00	000	000	000000000000000000000000000000000000000	0000	000	0

Introduction

Language with a type-free truth predicate (T) and type-free probability function symbol (P).

$$\begin{split} \lambda &\leftrightarrow \neg \mathsf{T}^{\scriptscriptstyle \Gamma} \lambda^{\scriptscriptstyle \neg} \\ \pi &\leftrightarrow \neg \mathsf{P}^{\scriptscriptstyle \Gamma} \pi^{\scriptscriptstyle \neg} > \frac{1}{2} \end{split}$$

Want to determine:

- Which sentences are true,
- What probabilities different sentences receive.

or at least some facts about these.

E.g.

- $T(T^{r}0 = 0^{r}) = t$,
- $\mathrm{p}(\lambda) = 1/2$,
- $p(\varphi) + p(\neg \varphi) = 1.$

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Revision theory of probability

A revision theory of probability. Gupta and Belnap (1993)

Considerations also apply to degrees of truth and any notion taking values in $\ensuremath{\mathbb{R}}.$

Fix a model *M* of base language \mathcal{L} . Our job is to pick $T : \mathsf{Sent}_{\mathsf{P},\mathsf{T}} \to \{t,f\}$ and $p : \mathsf{Sent}_{\mathsf{P},\mathsf{T}} \to [0,1]$.

A revision sequence is a sequence of hypotheses:

 $(T_0, p_0), (T_1, p_1), (T_2, p_2) \dots$

- To learn about these self-referential probabilities,
- To give more information about the truth revision sequence (focus on $\mathrm{p}_{\mathrm{On}}).$

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth

Revision sequence for truth

Revision Theory of Probability

Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth

Revision sequence for truth

Revision Theory of Probability

Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	● 00	000	000000000000000000	0000	000	0

What is probability?

Probability is some $p : \mathsf{Sent}_L \to \mathbb{R}$ with:

- $p(\varphi) \ge 0$ for all φ ,
- p(⊤) = 1,
- $p(\varphi \lor \psi) = p(\varphi) + p(\psi)$ for φ and ψ logically incompatible.

Many possible applications of the probability notion. E.g.

- Subjective probability, degrees of belief of an agent,
- Objective chance,
- Evidential support,
- 'Semantic probability'.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000000	0000	000	0

Semantic Probability

Says how true a sentence is.

This semantic probability assigns:

- 1 if φ is true
- 0 if φ is false.

E.g.
$$p(H) = 0 \text{ or } p(H) = 1.$$

But can give additional information about problematic sentences.

Add in additional probabilistic information to a usual truth construction.

- Kripkean: how many fixed points the sentence is true in.
- Revision: how often the sentence is true in the revision sequence.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Connection to Degrees of Truth

So it's very similar to a degree of truth.

Often Lukasiewicz logic used; to study vagueness.

Difference semantic probability and usual degrees of truth: Compositionality.

- $p(\varphi)$ and $p(\psi)$ don't fix $p(\varphi \lor \psi)$ unless φ and ψ are logically incompatible.
- DegTruth($\varphi \lor \psi$) = min{DegTruth(φ), DegTruth(ψ)}.

Though, e.g. Edgington (1997) for degrees of truth as probabilities.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth Revision sequence for truth

Revision Theory of Probability

Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	•00	000000000000000000000000000000000000000	0000	000	0

Revision sequence for truth

Revision Theory of Truth

Fix M a model of \mathcal{L} . Construct a model of \mathcal{L}_T by considering the extensions of truth.

$$\begin{array}{ccc} \mathbf{T}_{\mathbf{0}}(\lambda) = \mathbf{f} & \mathbf{T}_{\mathbf{1}}(\lambda) = \mathbf{t} & \mathbf{T}_{\mathbf{2}}(\lambda) = \mathbf{f} & \mathbf{T}_{\mathbf{3}}(\lambda) = \mathbf{t} \\ \mathcal{M}_{0} \models \lambda & \mathcal{M}_{1} \not\models \lambda & \mathcal{M}_{2} \models \lambda & \mathcal{M}_{3} \not\models \lambda \end{array}$$

 $\mathbf{T}_{n+1}(\varphi) = \mathbf{t} \iff \mathcal{M}_n \models \varphi.$

At each finite stage some $\overrightarrow{\mathsf{T}^{\top}\mathsf{T}^{\top}\ldots\mathsf{T}^{\top}0} = 0^{\neg}\ldots^{\neg}$ is not satisfied. So extend to the infinite stage and get $\mathcal{M}_{\omega} \models \forall n\mathsf{T}^{n} = 0^{\neg}$

In fact just going to ω isn't enough (E.g. $T \sqcap \forall n T^n \sqcap 0 = 0$) so need to go to the transfinite.

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	0000	000	0
Revision sequ	ence for truth					

Limit stage

At a limit stage α , one "sums up" the effects of earlier revisions: if the revision process up to α has yielded a definite verdict on an element, d, ... then this verdict is reflected in the α th hypothesis; Gupta and Belnap (1993)

If a definite verdict is brought about by the revision sequence beneath μ then it should be reflected in the μ th stage.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	0000	000	0
D. data and						

Revision sequence for truth

How do we define transfinite revision sequences for truth? Characterising brought about

- $T(\varphi) = t$ is stable beneath $\mu \implies T_{\mu}(\varphi) = t$
- $T(\varphi) = f$ is stable beneath $\mu \implies T_{\mu}(\varphi) = f$

Definition

C is stable beneath μ if

$$\exists \alpha < \mu \; \forall \beta_{<\mu}^{>\alpha}, \quad (\mathbf{T}_{\beta}, \mathbf{p}_{\beta}) \in \mathcal{C}.$$

E.g. T(0 = 0) = t is stable beneath ω :

 $\begin{array}{c} \mathbf{T}_{\mathbf{0}}(\mathbf{0}=\mathbf{0})=\mathbf{f} \\ \mathcal{M}_{\mathbf{0}}\models\mathbf{0}=\mathbf{0} \end{array} \qquad \begin{array}{c} \mathbf{T}_{\mathbf{1}}(\mathbf{0}=\mathbf{0})=\mathbf{t} \\ \mathcal{M}_{\mathbf{1}}\models\mathbf{0}=\mathbf{0} \end{array} \qquad \begin{array}{c} \mathbf{T}_{\mathbf{2}}(\mathbf{0}=\mathbf{0})=\mathbf{t} \\ \mathcal{M}_{\mathbf{2}}\models\mathbf{0}=\mathbf{0} \end{array} \qquad \begin{array}{c} \mathbf{T}_{\boldsymbol{\omega}}(\mathbf{0}=\mathbf{0})=\mathbf{t} \\ \mathcal{M}_{\mathbf{2}}\models\mathbf{0}=\mathbf{0} \end{array}$

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth Revision sequence for truth

Revision Theory of Probability Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

 Introduction
 Probability
 Revision Theory of Truth
 Revision Theory of Probability
 Some results
 Horsten
 Conclusions

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Applying revision to probability

Applying revision to probability

A revision sequence is a sequence of hypotheses:

 $(T_0, p_0), (T_1, p_1), (T_2, p_2) \dots (T_{\omega}, p_{\omega}), (T_{\omega+1}, p_{\omega+1}) \dots$

To give a revision theory we need to say:

- How to revise (T_{α}, p_{α}) to get $(T_{\alpha+1}, p_{\alpha+1})$.
- How to sum up these into (T_{μ}, p_{μ}) for limits μ .

Gupta and Belnap (1993) give a general revision theory.

- The revision rule gives the (T_α, p_α) → (T_{α+1}, p_{α+1}).
- For the limit step, one uses:

If a definite verdict is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

I.e. If $p(\varphi) = r$ is stable beneath μ then $p_{\mu}(\varphi) = r$.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Applying revision to probability

Revision Rule

 $p_{\mu+n}(\varphi)$ is relative frequency of φ being satisfied in $\mu, \mu+1, \ldots, \mu+n-1$.

$$p_{\mu+n}(\varphi) = \frac{\#\{\alpha \in \{\mu, \ldots, \mu+n-1\} \mid \mathcal{M}_{\alpha} \models \varphi\}}{n}.$$

$$\begin{array}{cccc} \mathcal{M}_{0} \models \lambda & \mathcal{M}_{1} \not\models \lambda & \mathcal{M}_{2} \models \lambda & \mathcal{M}_{3} \not\models \lambda \\ & p_{1}(\lambda) = 1 & p_{2}(\lambda) = \frac{1}{2} & p_{3}(\lambda) = \frac{2}{3} \\ \hline \mathcal{M}_{\omega} \models \lambda & \mathcal{M}_{\omega+1} \not\models \lambda & \mathcal{M}_{\omega+2} \models \lambda & \mathcal{M}_{\omega+3} \not\models \lambda \\ & p_{1}(\lambda) = 1 & p_{2}(\lambda) = \frac{1}{2} & p_{3}(\lambda) = \frac{2}{3} \end{array}$$

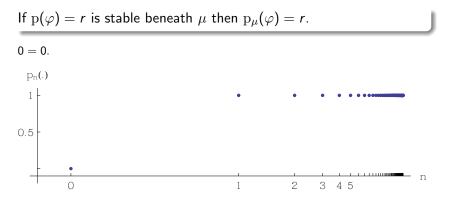
- For all limits μ , $p_{\mu+1}(\varphi) = 0$ or $p_{\mu+1}(\varphi) = 1$.
- Alternative: Horsten (ms).

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Applying revision to probability						

Limit stage

If a definite verdict is brought about beneath μ then it should be reflected at $\mu.$



So we get:
$$p_{\omega}(0=0)=1$$

Catrin Campbell-Moore

Revision Theory of Probability

IntroductionProbabilityRevision Theory of Truth000000000

Revision Theory of Probability

ty Some results

results Horst 000 Conclusions

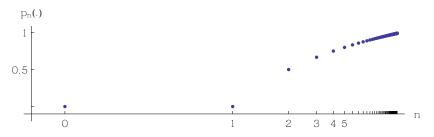
Applying revision to probability

It's not powerful enough here Converging probability

Desired:

If
$$p_n(\varphi) \longrightarrow r$$
 as $n \longrightarrow \omega$ then $p_\mu(\varphi) = r$.

 $T^{\Gamma}0 = 0^{\neg}.$



Want: $p_{\omega}(\mathsf{T}^{\neg}\mathsf{0}=\mathsf{0}^{\neg})=1$

But this isn't yet a "definite verdict".

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Applying revision to probability						

Original proposal:

The limit stage

If a definite verdict is brought about by the sequence beneath μ then it should be reflected in the μ^{th} stage.

- Brought about:
 - Stable beneath μ

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Applying revision to probability						

The limit stage

Reformulated:

If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

- Brought about:
 - Stable beneath μ
- Properties to focus on:
 - All definite verdicts: $p(\varphi) = r$, $T(\varphi) = t/f$.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Applying revis	ion to probabi	lity				

The limit stage

Extended to capture convergence:

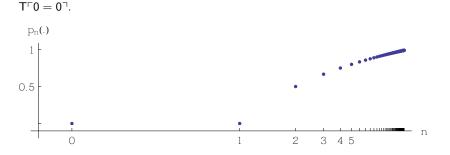
If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

- Brought about:
 - Stable beneath μ
- Properties to focus on:
 - All intervals: $r \leq p(\varphi) \leq q$, and $T(\varphi) = t/f$.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
A second state of the second state	en an	194 - C				

Applying revision to probability

Considering intervals now captures converging probability



For each $\epsilon > 0$,

$$1 - \epsilon \leqslant p(\mathsf{T}^{\scriptscriptstyle \sqcap}\mathsf{0} = \mathsf{0}^{\scriptscriptstyle \urcorner}) \leqslant 1$$

is stable beneath ω .

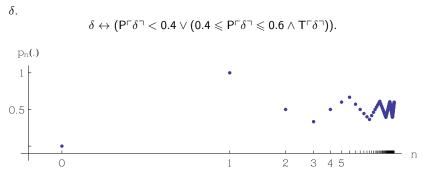
So:
$$p_{\omega}(\mathsf{T}^{\sqcap}\mathsf{0}=\mathsf{0}^{\sqcap})=1$$

 Introduction
 Probability
 Revision Theory of Truth
 Revision Theory of Probability
 Some results
 Horsten

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Applying revision to probability

We get more than just convergence



So: $0.4 \leqslant p_{\omega}(\delta) \leqslant 0.6$

Conclusions

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Strengthening	the limit clau	se				

Go further?

Current proposal:

If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

- Brought about:
 - Stable beneath μ
- Properties to focus on:
 - All intervals $\mathit{r} \leqslant \mathrm{p}(arphi) \leqslant \mathit{q}$, and $\mathrm{T}(arphi) = \mathrm{t/f}$

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0
Strengthening	the limit clau	se				

Go further?

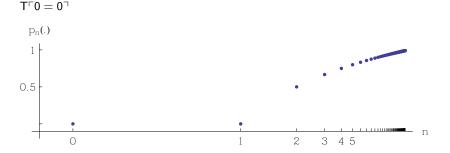
Extending further:

If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

- Brought about:
 - Stable beneath μ
- Properties to focus on:
 - As many as possible

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000	0000	000	0

Cannot consider any properties



 $p(T^{r}0 = 0^{7}) < 1$ is stable beneath ω . But this *should not* be reflected at ω ! We want $p_{\omega}(T^{r}0 = 0^{7}) = 1$. The problem is: $p(T^{r}0 = 0^{7}) < 1$ does not act nicely under limits.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Closed properties

Closed properties are those:

- That "act nicely" under limiting operations.
- Formally: closed in the product topology on $(\{t,f\}\times [0,1])^{\mathsf{Sent}_{\mathsf{P},\mathsf{T}}}$

E.g.

Closed	Not closed
$r\leqslant \mathrm{p}(arphi)\leqslant q$	$r < \mathrm{p}(arphi) < q$
$T(\varphi) = t; T(\varphi) = f$	$\mathrm{p}(\varphi) \in \mathbb{Q}$
$\mathrm{p}(arphi) + \mathrm{p}(\psi) = \mathrm{p}(arphi \lor \psi)$	$\mathrm{p}(\varphi) + \mathrm{p}(\psi) \neq \mathrm{p}(\varphi \lor \psi)$
${ m p}$ is finitely additive probability	p is $\mathbb{N} ext{-}additive.$
${ m T}$ is maximally consistent	T is ω -consistent.
$\operatorname{p}(arphi)\in\{0,1\}$	

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	0000000000000000	0000	000	0
Strengthening	the limit clau	se				

Going further

Extending further:

If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

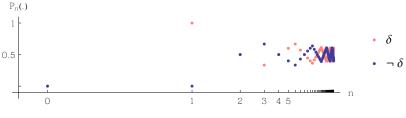
- Brought about:
 - Stable beneath μ
- Properties to focus on:
 - As many as possible
 - All closed properties of hypotheses

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Relationships between probabilities

 δ ; where

$$\delta \leftrightarrow (\mathsf{P}^{\scriptscriptstyle \sqcap} \delta^{\scriptscriptstyle \sqcap} < 0.4 \lor (0.4 \leqslant \mathsf{P}^{\scriptscriptstyle \sqcap} \delta^{\scriptscriptstyle \sqcap} \leqslant 0.6 \land \mathsf{T}^{\scriptscriptstyle \sqcap} \delta^{\scriptscriptstyle \sqcap})).$$



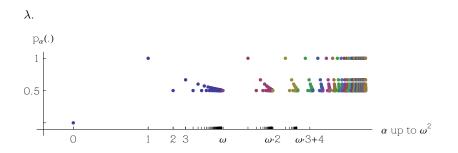
 $p(\delta) + p(\neg \delta) = 1$ is closed and stable. So: $p_{\omega}(\delta) + p_{\omega}(\neg \delta) = 1$

We similarly get:

If each p_{α} is a finitely additive probability ($\alpha < \mu$), then so is p_{μ}

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Transfinite



Want: $p_{\omega \cdot \omega}(\lambda) = 1/2$ But $1/4 \leq p(\lambda) \leq 3/4$ isn't stable beneath $\omega \cdot \omega$. Instead it's nearly stable.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Getting the transfinite right

If a property of the hypotheses is brought about by the sequence beneath μ then it should be reflected in the $\mu^{\rm th}$ stage.

- Brought about:
 - Nearly stable beneath μ
- Properties to focus on:
 - All closed properties of hypotheses

Definition

C is nearly stable beneath μ if

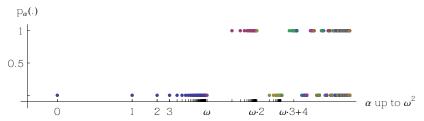
$$\exists \beta < \mu \; \forall \alpha_{>\beta}^{<\mu} \; \exists N < \omega \; \forall n_{>N}^{<\omega} \quad (\mathbf{T}_{\alpha+n}, \mathbf{p}_{\alpha+n}) \in C$$

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	0000000000000●	0000	000	0

Non-convex features

$$\delta \leftrightarrow \left(\begin{array}{c} (\mathsf{limstage} \land \neg \mathsf{T}^{\scriptscriptstyle{\top}} \delta^{\scriptstyle{\neg}}) \\ \lor \quad (\neg \mathsf{limstage} \land \mathsf{T}^{\scriptscriptstyle{\top}} \delta^{\scriptstyle{\neg}}) \end{array}\right)$$

Where limstage is $\neg \gamma$ for $\gamma : \neg \forall n \mathsf{T}^{n} \ulcorner \gamma \urcorner$.



 $p(\delta) \in \{0,1\}$ is closed and stable beneath ω .

So: $p_{\omega \cdot \omega}(\delta) \in \{0, 1\}.$

Is this desirable behaviour? Perhaps restrict to closed *convex* sets?

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth

Revision sequence for truth

Revision Theory of Probability Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

	Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions	
	000	000	000	000000000000000000000000000000000000000	0000	000	0	
9	Showing they exist							

Revision sequences exist

Theorem

The limit rule given is always satisfiable

Using the topological compactness of $(\{t,f\}\times [0,1])^{\mathsf{Sent}_{\mathsf{P},\mathsf{T}}}.$

But there might be many hypotheses satisfying the limit criterion. $\ensuremath{\mathsf{E.g.}}$



Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000	0000	000	0

Properties of the revision sequences

Probability at limits

Theorem

- p_µ is a finitely additive probability function
- T_µ is maximally consistent

This contrasts to usual revision theory.

Limit stages are legitimate models of the language.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000	0000	000	0

Properties of the revision sequences

Countable additivity

Things don't work so well with quantifiers:

Theorem

There is a formula $\varphi(x)$ with:

- for each n, $T_{\mu}(\varphi(\overline{n})) = t$; $T_{\mu}(\forall n \, \varphi(n)) = f$
- for each n, $p_{\mu}(\varphi(\overline{n})) = 1; p_{\mu}(\forall n \, \varphi(n)) = 0$

I.e.

- T_μ is ω-inconsistent
- p_µ is not ℕ-additive

Proof.

McGee (1985). Consider
$$\gamma \leftrightarrow \neg \forall n \, \mathsf{T}^{n+1} \ulcorner \gamma \urcorner$$
.
 $\varphi(n) := \mathsf{T}^{n+1} \ulcorner \gamma \urcorner$

ω-consistency and N-additivity are not closed properties. Catrin Campbell-Moore Revision Theory of Probability

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	000	000	0

Properties of the revision sequences

Probabilistic Convention T

Theorem

 p_{μ} satisfies Probabilistic Convention T:

$$\mathbf{p}_{\mu}(\varphi) = \mathbf{p}_{\omega}(\mathsf{T}^{\scriptscriptstyle \Box}\varphi^{\scriptscriptstyle \Box}).$$

Proof.

$$|\mathrm{p}_{\beta+n}(\varphi) - \mathrm{p}_{\beta+n}(\mathsf{T}^{\scriptscriptstyle{\sqcap}}\varphi^{\scriptscriptstyle{\sqcap}})| \longrightarrow 0 \text{ as } n \longrightarrow \omega.$$

Note: depends on the revision rule.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth

Revision sequence for truth

Revision Theory of Probability

Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	•00	0

Horsten (ms)

Define:

• For X a finite set of ordinals $< \beta$:

$$p_X(\varphi) := \frac{\#\{\alpha \in X \mid \mathcal{M}_\alpha \models \varphi\}}{\#X}.$$

• If for all $\epsilon > 0$, enough X have $|p_X(\varphi) - r| < \epsilon$ then put $p_\beta(\varphi) = r$.

What does 'enough' mean? Use a non-principal ultrafilter \mathcal{U}_{β} on $(\beta)^{<\omega}$.

Theorem

 $p_{\beta}(\varphi)$ receives a value for all φ . And is a (finitely additive) probability function.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Connection to closed properties definition

Theorem If $C \subseteq [0,1]^{\text{Sent}_{P,T}}$ is closed and $\{X \in \beta^{<\omega} \mid p_X \in C\} \in \mathcal{U}_{\beta}$ then $p_{\beta} \in C$.

For choices of ultrafilters at limits that cohere with the near stability characterisation, it'll then satisfy my conditions.

Horsten's can also apply at the successor stage.

- E.g. previous one had $p_{\mu+1}(\varphi) \in \{0,1\}$.
- This can instead 'look through' the limit stages by taking samples.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	0000	000	0

Limiting behaviour

Horsten also says: treat 'arbitrarily close' different to 'equal'.

Only put $p_{\beta}(\varphi) = r$ if $p_X(\varphi) = r$ often enough (instead of close enough).

If $|p_X(\varphi) - r| < \epsilon$ often enough for each ϵ then $p_\beta(\varphi) \approx r$. Then $p_\beta(\varphi)$ is a non-standard number.

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	000000000000000000000000000000000000000	0000	000	0

Outline

Introduction

Probability

Revision Theory of Truth

Revision sequence for truth

Revision Theory of Probability

Applying revision to probability Strengthening the limit clause

Some results

Showing they exist Properties of the revision sequences

Horsten

Conclusions

Catrin Campbell-Moore

Introduction	Probability	Revision Theory of Truth	Revision Theory of Probability	Some results	Horsten	Conclusions
000	000	000	00000000000000	0000	000	•

Summary

We've constructed a revision theory for probability. Where probability is a semantic notion like degree of truth. Which measures how often φ was satisfied in the revision sequence.

I focused on the limit stages and focused on closed properties being 'taken over' instead of definite verdicts.

And this should apply more generally to revision sequences with other value spaces.

Horsten's proposal is related and is a generalisation of mine for certain choices of ultrafilters.

His allows nicer successor stages.

Thanks!

References I

- Dorothy Edgington. Vagueness by degrees. In Rosanna Keefe and Peter Smith, editors, *Vagueness: A Reader.* MIT Press, 1997.
- Anil Gupta and Nuel Belnap. The revision theory of truth. *MIT Press, Cambridge*, 1(99):3, 1993.
- Leon Horsten. On revising probability and truth. Slides from talk at Predicate Approaches to Modality, Ludwig-Maximilian Universität München, 12 September 2014, ms.
- Vann McGee. How truthlike can a predicate be? A negative result. *Journal of Philosophical Logic*, 14(4):399–410, 1985.